
J. Mol. Model. 2000, 6, 498 – 516

© Springer-Verlag 2000FULL PAPER

Correspondence to: L. Lai

Introduction

Since the 1980s, the process of drug discovery and design
has been profoundly affected by the emergence of new meth-
ods and technologies. With the improvements in experimen-
tal techniques of X-ray crystallography and NMR, the
amount of information concerning 3D structures of
biomolecular targets has increased dramatically. At the time
of writing this paper, the number of 3D structures in the
Protein Data Bank (PDB) has exceeded 10,000.[1] This vast
body of knowledge has led to considerable effort in exploit-
ing structural information in order to design novel ligands
that bind tightly and selectively to the target protein, a proc-
ess which is usually referred to as structure-based drug de-
sign. A number of such approaches have already been re-

ported.[2-9] Several compounds designed in this manner are
now in clinical trials.

The success of structure-based drug design methodol-
ogy has encouraged the development of various computa-
tional methods that can make use of structural information
to suggest novel structures, which may either prove to be
useful lead compounds or act as a stimulus to the creativity
of designers. Ideally, these methods should be fast, objec-
tive and produce a set of diverse yet chemically reasonable
structures. This field continues to receive intense interest
and has been reviewed from time to time.[10-14]

Current methods for structure-based drug design can be
divided roughly into two categories. The first category is
about “finding” ligands for a given receptor, which is usu-
ally referred as database searching. In this case, a large
number of molecules are screened to find those fitting the
binding pocket of the receptor. Some researchers call this
“virtual screening” in analogy to the bioassay screening pro-
cedure employed in the traditional drug discovery. The key
advantage of database searching is that it saves synthetic

LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design

Renxiao Wang, Ying Gao, and Luhua Lai

Institute of Physical Chemistry, Peking University, Beijing 100871, P.R.China. E-mail: lai@mdl.ipc.pku.edu.cn

Received: 6 December 1999/ Accepted: 28 February 2000/ Published: 16 August 2000

Abstract We have developed a new multi-purpose program, LigBuilder, for structure-based drug de-
sign. Within the structural constraints of the target protein, LigBuilder builds up ligands step by step
using a library of organic fragments. Various operations, such as growing, linking, and mutation, have
been implemented to manipulate molecular structures. The user can choose either growing or linking
strategies for ligand construction and a genetic algorithm is adopted to control the whole construction
process. Binding affinities of the ligands are estimated by an empirical scoring function and the
bioavailabilities are evaluated by a set of chemical rules. Using thrombin and dihydrofolate reductase
as examples, we have demonstrated that LigBuilder is able to generate chemical structures similar to
the known ligands.

Keywords Structure-based drug design, Automatic ligand construction, Fragment-based approach,
Genetic algorithm

effort to obtain new lead compounds. One of the earliest pro-
grams for performing 3D database searching is DOCK.[15-
19] Another category of structure-based drug design meth-
ods is about “building” ligands, which is usually referred as
de novo design. In this case, ligand molecules are built up
within the constraints of the binding pocket by assembling
small pieces in a stepwise manner. These pieces can be ei-
ther atoms or fragments. The key advantage of such a method
is that novel structures, not contained in any database, can be
suggested. The earliest de novo design method began with
GRID[20] and many groups have been actively involved in
this field since then. Current popular de novo design pro-
grams include GROW,[21] LUDI,[22-25] LEAPFROG,[26]
SPROUT,[27] PROLIGAND[28-33] etc. These techniques are
raising much excitement to the drug design community.

In this paper, we will describe a new program, LigBuilder,
which has been developed for structure-based drug design.
Based on the structural constraints of the target protein,
LigBuilder builds up ligands iteratively by using a library of
organic fragments. The program provides growing and link-
ing strategies to build up ligands and the whole construction
process is controlled by a genetic algorithm. The protein-
ligand binding affinity is evaluated by using an empirical
scoring function instead of force field energies. Besides bind-
ing affinity, biological availability of the ligand is also taken
into account by applying certain chemical rules. We have
tested the program on two well-characterized enzymes,
thrombin and dihydrofolate reductase. In both cases
LigBuilder has reproduced the known binding mode found
in the crystal structure. The potential application of LigBuilder
to drug design and discovery is also discussed.

We will give a brief overview of LigBuilder first. A more
detailed description of this program is divided into the fol-
lowing sections: binding pocket analysis, building-up method,
scoring method and genetic algorithm procedure.

Overview of the program

LigBuilder is designed for structure-based drug design ap-
proaches. Therefore, the basic input for the program is the

3D structure of the target protein and the output will be a
number of ligands that fit into the binding pocket sterically
and chemically. It is composed of three major modules, i.e.
POCKET, GROW, and LINK, each of which has a unique
function in the designing procedure. The relationships be-
tween three modules are illustrated in Figure 1. All the source
codes are written in C++ language..

POCKET is the first module to be run. It reads the target
protein, analyzes the binding pocket, and then prepares the
necessary data for GROW and LINK. POCKET also derives
key interaction sites within the binding pocket. Such infor-
mation could be used as the pharmacophore query for 3D
database searching.

LigBuilder provides two strategies to build up ligand
molecules: one is growing strategy while the other is linking
strategy. GROW and LINK are designed to carry out them,
respectively. The concept of these two strategies is illustrated
in Figure 2. With the growing strategy, the building-up proc-
ess starts from a ”seed” structure that has been pre-placed in
the binding pocket. The user can assign certain ”growing sites”
on the seed structure and then the program will try to replace
each growing site with a candidate fragment. The newly
formed structure will serve as the seed structure for the next
growing cycle. With the linking strategy, the building-up proc-
ess also starts from a pre-placed seed structure. However, in
this case the seed structure consists of several separated pieces
that have been positioned to maximize the interactions with
the target protein. The growing of fragments happens simul-
taneously on each piece and the program will always try to
link these pieces in an acceptable way. This process contin-
ues until all the pieces have been integrated into one mol-
ecule.

Figure 1 Overall structure of LigBuilder Figure 2 Growing strategy (the left) and linking strategy (the
right) for building up ligands

J. Mol. Model. 2000, 6 499

500 J. Mol. Model. 2000, 6

As implied above, LigBuilder constructs molecules step
by step. The possible solution space for a given design prob-
lem could be extremely large due to the combinatorial nature
of the construction process. Although in practice the con-
straints of the binding pocket will reduce the solution space
largely, it is still impossible to perform a systematic sam-
pling. For such a complex, large-scale problem, genetic al-
gorithms have proved to be very effective for finding optimal
solutions within a reasonable amount of time.[34] Therefore,
we have adopted a genetic algorithm to control the whole
ligand building-up process in GROW and LINK. The mol-
ecules selected as the final outputs are usually ”winners”
among thousands of candidates.

Binding pocket analysis

The main function of POCKET is analyzing the binding
pocket. Since we treat the target protein as rigid throughout

the ligand construction process, this step is necessary only
once for a given protein.

The basic input for POCKET is the 3D structure of the
protein that is represented in PDB format. The user may also
include metal ions and water molecules if they are an impor-
tant part of the binding pocket. A pre-docked ligand is re-
quired to help the program to locate the binding pocket. The
program will define a box to cover the ligand and all the
surrounding residues and create regular-spaced grids within
the box. The grid spacing is 0.5Å by default. Then the pro-
gram places a hydrogen atom as a probe on each grid to check
its accessibility. If the probe bumps into the protein, that grid
will be labeled as ”excluded”. A bump is counted when the
interatom distance is less than the sum of van der Waals radii
minus 0.5Å. The van der Waals radii of all atom types are
taken from the Tripos force field.[35] If the probe does not
bump into the protein, that grid will be labeled as ”vacant”.
Note that, if a grid is farther than 5Å from any atom on the
protein, it will be labeled as ”outside” rather than ”vacant”.

Figure 3 Deriving key interaction sites of phospholipase A2
(PDB entry 1POE) with the POCKET program. (a) After
screening all the grids with three types of probe atoms. (b)
After filtering out unimportant grids. (c) After filtering out
isolated grids. (d) Pharmacophore model obtained. (In all

figures, hydrogen bond donor grids are colored in blue, hy-
drogen bond acceptor grids in red, and hydrophobic grids in
green. The protein is hidden for the sake of a clear represen-
tation. The ligand is shown here for instead to illustrate the
shape of the binding pocket)

(c) (d)

(a) (b)

J. Mol. Model. 2000, 6 501

The assembly of ”vacant” grids forms the body of the bind-
ing pocket within which ligands will be built up.

As the next step, the program will derive key interaction
sites within the binding pocket. Such information is neces-
sary for the subsequent ligand construction process. The pro-
gram uses three different types of probe atoms to screen the
binding pocket, which include (1) a positively charged sp3

nitrogen atom (ammonium cation), representing a hydrogen
bond donor; (2) a negatively charged sp2 oxygen atom (as in
a carboxyl group), representing a hydrogen bond acceptor,
and (3) a sp3 carbon atom (methane), representing a hydro-
phobic group. For each ”vacant” grid, all the three probe at-
oms are applied and the binding energies between the probe
atoms and the protein are calculated by using an empirical
scoring function we have developed (see the Scoring method
section below). Each grid will be labeled as ”donor”, ”ac-
ceptor”, or ”hydrophobic” according to the highest score on
this grid. At this stage, however, we still do not have a clear
image of where the key interaction sites are located (see Fig-
ure 3a). The program will then ”filter” all the grids to derive
the key interaction sites in a two-step process. At the first
step, the program calculates the average score of all ”donor”
grids. Then it will figure out the grids which score lower than
the average and label them back to ”vacant”. The same proc-
ess is also repeated for the ”acceptor” grids and the ”hydro-
phobic” grids. After this step, only those grids with signifi-
cant contributions to the ligand-protein binding process will
survive (see Figure 3b). At the second step, the program checks
each survived ”donor” grid and counts the number of its
neighbors. Here ”neighbor” refers to the same type of grid
within 2Å. The program will calculate the average number
of neighbors for all the ”donor” grids. Those grids with less
neighbors than the average will be filtered out and labeled
back to ”vacant”. The same process is also repeated for the

”acceptor” grids and the ”hydrophobic” grids. After this step,
only those grids in aggregation will survive and now they
represent the key interaction sites within the binding pocket
clearly (see Figure 3c). Finally, the program will locate the
geometric center of each aggregation and use it to suggest a
pharmacophore model (see Figure 3d). This binding-site-de-
rived pharmacophore model could be used as the query struc-
ture to perform 3D database searching, which provides an
additional way to find novel ligand molecules that fit to the
target protein.

POCKET will also generate two other output files: one
file stores all the atoms forming the binding pocket; the other
file stores all the grids within the binding pocket. These two
files will be used by GROW and LINK in the subsequent
ligand construction process.

Building-up method

Building block library

LigBuilder uses a fragment-based algorithm to construct
molecules. The term ”fragment” is used here to describe the
building blocks used in the construction process. The ration-
ale of this algorithm lies in the fact that organic structures
can be decomposed into basic chemical fragments (see Fig-
ure 4). Although the diversity of organic structures is infi-
nite, the number of basic fragments is rather limited. The
fragments used by LigBuilder are listed in Scheme 1. All of
them can be classified into two categories: chemical groups
and rings. In this library, there are also some complex frag-
ments, such as acetone, which can be decomposed into more
elementary fragments. The purpose of including these ”re-
dundant” fragments is to speed up the ligand construction
process.

All the fragments are stored in SYBYL MOL2 format and
their structures are minimized. If a fragment could take dif-
ferent conformations, then the favorite one is chosen. For
example, cyclohexane is represented in the chair conforma-
tion. The user is allowed to edit the building-block library to
determine which fragments will be used in the ligand con-
struction process. The user is also allowed to add new frag-
ments to this library to meet his special purpose.

Structural operation

In LigBuilder, the basic structural operation for building up
a molecule is adding a fragment to an existing molecule. A
molecule can be finally constructed by repeating this opera-
tion.

This process starts with growing operation. In order to
add a fragment onto an existing molecule (referred as ”core”
in the following text), the program selects a hydrogen atom
on the core and a hydrogen atom on the fragment. The bonds
connecting the hydrogen atoms and the corresponding heavy

Figure 4 Decomposing organic structures into basic frag-
ments

N
H

O

NH2

HN

O

H
H

H

H

H

H

H

H

H
N

H

HH
+ +

+ +

502 J. Mol. Model. 2000, 6

Hydrocarbons
HH

H

H
CH3 CH3 CH3 CH3

H

H H

H H

H CH3

H CH3

H CH3

H

Amines
N

HH

H
CH3 NH2 CH3

N
H

CH3

Alcohols and ethers CH3

O
CH3H

O
H CH3 OH

Aldehydes and ketones H H

O O

H CH3

O

CH3 CH3

Acids, esters, and amides

O

H OH

O

CH3 OH

O

H O
CH3

O

CH3 O
CH3

O

H NH2

O

CH3 NH2

O

CH3 N
H

CH3

O

NH2 NH2

O

H N
H

CH3

Amidino and guanidino group
H

NH2

NH2

NH2
NH2

NH2

+ +

Single rings N
H

Scheme 1 (continues next page)The building block library used in LigBuilder

atoms are used to orient the fragment to the core. Once the
fragment has been oriented correctly, the two hydrogen at-
oms are deleted and a new single bond is created to connect
the core and the fragment (see Figure 5).

In principle the newly formed single bond is rotatable.
Therefore the next step is to determine the dihedral angle
between the fragment and the core. To do so, the fragment is
rotated along the new bond thoroughly in an increment of
15° and the program will calculate the steric energy for each
resultant conformation (24 conformations in total). Based on

the energy profile obtained, the program will pick out the
conformation(s) corresponding to the energy minima. Since
a dihedral angle is usually multiple-folded, growing a frag-
ment on the core structure with the above algorithm often
results in more than one conformation. The program will
consider them all and treat them as different molecules. In
this way, the flexibility of the ligand molecule is taken into
account during the ligand construction process.

During the systematic rotation, the fragment may collide
with the core. Of course such a colliding conformation will

J. Mol. Model. 2000, 6 503

Multiple rings

N
H

NH

NH

O

O
N
H

NNH

N
H

O

O

N
H

O

O

S-contained fragments

H
S

H
H H

S

H
S

H

O

H S

O

O

OH

H S

O

O

H

H S

O

O

NH2

S S

P-contained fragments OH P

O

OH

OH

OH P

O

NH2

O

Halogens H F H Cl H Br H I

Scheme 1 (continued)The building block library used in LigBuilder

not be a minimum on the energy profile. However, if the frag-
ment collides with the core in such a way that they can be
linked together reasonably, it will be an alternative way to
generate structures. We call this a linking operation. We have
designed three types of linking algorithms (see Figure 6).
Which algorithm will be applied basically depends on the
distance between the two bumped structures. The first algo-
rithm is applied when the two structures bump only by a pair
of hydrogen atoms. In this case, the program will delete the
colliding hydrogen atoms and use a methylene group to bridge
these two structures. The second algorithm is applied when
the two structures bump by a pair of heavy atoms. In this
case, the program will create a new single bond to connect

the two heavy atoms directly. If the two structures are so
close that a pair of heavy atoms overlap, the third algorithm
will be applied. In this case, the program will delete one of
the overlapped atoms and connect the remained structures.
Note that a linking operation will be accepted only when
geometry and chemistry of the linkage are both proper. If a
linking operation results in reluctant conformations or un-
reasonable chemical structures, it will be rejected.

The next step is to make necessary modifications on the
structure. We call this a mutation operation. Our program
allows carbon, nitrogen, and oxygen atoms with the same
hybridization state to mutate to each other (see Scheme 2).
We assume that the bond angles and bond lengths are un-

504 J. Mol. Model. 2000, 6

changed during the mutation operation because such changes
are actually neglectable comparing to other inaccuracies em-
bedded in the ligand construction process.

We do not allow the mutation to happen randomly on the
structure. On the contrary, we adopt a ”smart mutation” strat-
egy. Before performing mutation, the program will check each
heavy atom of the molecule to see whether it fits the grid on
which it lies. For example, it is all right if a carbon atom lies
on a ”hydrophobic” grid. But if it lies on a ”donor” grid, the
program will try to mutate it to a hydrogen bonding donor
atom, such as nitrogen. The information of the grids is given
by POCKET in advance. With this ”smart mutation” strat-
egy, our program improves the ligand binding affinity with a
minimal computational cost.

After all the above operations have finished, the program
will check the newly generated molecule to see whether it
bumps to the target protein. If so, the molecule will be re-
jected. By default, all the hydrogen atoms on the fragment
will be labeled as growing sites for further development of
the molecule. However, there could be some hydrogen atoms
that are already so close to the protein that no more frag-
ments can be added. The program will label them as dead
ends. No attempt will be made to grow fragments from them.

All the above operations are implemented both in GROW
and LINK. All the parameters for bond length, torsion angle
potential, and van der Waals radii are taken from the Tripos
force field.[35]

Chemical rules for preventing unreasonable structures

Our program also checks each newly generated molecule in
two ways to ensure its chemistry is reasonable. First, we have
built a set of rules in the program to define unacceptable
structures. Such structures mainly include those in which
hetero-atoms bond to each other, e.g. O-O, N-N, and N-O,
and those in which too many hetero-atoms bond to the same
carbon atom. These rules are derived from the analysis of
current drug molecules and the knowledge of our best or-

Figure 5 Illustration of growing operation

R1
N
H

R2

R1 R2

R1
O

R2

O

R1
R2

O

R1 N
H

R2

O

R1 O
R2

N
H

O

N

N

N

N

R H

Scheme 2Mutation operations allowed in LigBuilder

H

O

H

O

J. Mol. Model. 2000, 6 505

Figure 7 Flowchart of the genetic algorithm implemented
in LigBuilder

ganic chemists. If a molecule violates any of the rules, it will
be rejected. Secondly, we allow the user to supply an exter-
nal fragment library to filter the molecules generated further.
This library is called the ”forbidden substructure library”.
The user can build and deposit any chemical structure that is
not desired in the resultant molecules into this library. The
program will check each molecule with a substructure map-
ping algorithm. If a molecule contains any of the forbidden
fragments, it will be rejected too.

Scoring method

In LigBuilder, a ligand molecule has two kinds of score. One
is about its binding affinity to the target protein while the
other is about its bioavailability.

To calculate the binding affinity score, our program uses
the SCORE algorithm we have described before.[36] SCORE
is an empirical procedure developed to estimate the binding
free energy of a ligand molecule to its receptor protein when
the 3D structure of the complex is known. The basic idea of
SCORE is to dissect the binding free energy into some com-
ponents. It uses the following linear scoring equation.

0GGGGGG
rotorchydrophobibondHvdwbind

∆+∆+∆+∆+∆=∆ − (1)

Here, ∆Gvdw refers to the contribution of van der Waals
interaction; ∆GH-bond refers to the contribution of hydrogen
bonding; ∆Ghydrophobic refers to the contribution of hydropho-
bic interaction; ∆Grotor refers to the entropy loss due to the
freezing of rotatable bonds in the ligand; ∆G0 is a constant.
The coefficients of each term are determined by multivariate
regression analysis of 170 protein-ligand complexes with
known binding free energies and crystalline structures. This
scoring function reproduces the absolute binding free ener-
gies of the whole training set with a standard deviation of 1.6
kcal·mol-1. Such a scoring function is especially suitable for
a drug design program because it gives an estimation of the
binding free energy and makes a good comprise between
speed and accuracy.

Good binding affinity is only part of the story for a suc-
cessful drug molecule. In recent years, more and more atten-
tion has been paid to predicting the bioavailability of a mol-

ecule.[37-39] Maybe the most popular approach is the so-
called ”Lipinski rules”.[37] According to the Lipinski rules,
poor absorption or permeation is more likely when (i) mo-
lecular weight is over 500, (ii) logP is over 5, (iii) there are
more than 5 H-bond donors (the sum of OHs and NHs), or
(iv) there are more than 10 H-bond acceptors (the sum of Os
and Ns). We have incorporated these rules in the program to
evaluate the bioavailability of the designed molecules. If a
molecule violates any of these rules, it will be penalized in
its bioavailability score and therefore become less competi-
tive in the genetic algorithm procedure. The more it violates
a certain rule, the more it will be penalized. By default we
use the criteria given by the Lipinski rules. However, the user
is allowed to change the criteria according to his own pur-
pose.

While the molecular weight and the number of H-bond
donors or acceptors can be easily obtained, the logP value is
calculated by using the XLOGP algorithm we have described
before.[40]

Genetic algorithm procedure

Due to the combinatorial nature of the ligand building-up
process, the possible solution space for a given design prob-
lem is extremely large. For example, assuming that you have

A2 A1

H H
B1

B2 A2 A1 B1

B2

A1 H
A2 H B1

B2 A1

A2 B1

B2

A1

A2 B1

B2 A1

A2 B2

Bridging

Joining

Fusing or
B1

A2 B2

Figure 6 Illustration of link-
ing operation (Here A and B
represent heavy atoms)

506 J. Mol. Model. 2000, 6

a seed structure with three growing sites and there are 60
fragments in the building-block library, you may get as many
as 60*60*60=216,000 derivative molecules. In the next grow-
ing round, these 216,000 molecules will generate countless
new molecules. For such a complex, large-scale problem, it
is simply impossible to perform a systematic sampling. There-
fore, we have implemented a genetic algorithm (GA)[34] to
control the ligand building-up process in GROW and LINK.

The flow chart of the GA procedure is illustrated in Fig-
ure 7, which follows the typical ”generational-replacement”
strategy. The whole procedure is basically the same for GROW
and LINK. The user is required to give a few necessary pa-
rameters, including the population size, the mating pool size,
the number of GA generations, and the maximum number of
resultant molecules. The following sections will explain the
whole GA procedure in detail.

Generating the initial population

The whole procedure starts from a seed structure that is pro-
vided by the user. All the resultant molecules given by
LigBuilder can be considered as its derivatives. Although there
is no problem to develop a program which can suggest a seed
structure automatically, we have decided not to do so. It is
because we want the user to apply his expertise to the design
procedure rather than just use the whole program as a black
box. For a drug design project, it is usually not demanding to
propose such a seed structure. Typically the seed structure
may come from a part of a known inhibitor or any other struc-
ture of interest.

The seed structure also needs to be pre-docked into the
binding pocket by the user. It will be ideal that the seed struc-
ture forms some specific interactions with the target protein.
Another thing that the user is supposed to do is to assign
growing sites on the seed structure. In LigBuilder, a growing
site refers to a certain hydrogen atom of the molecule onto
which a fragment could be added. By assigning the growing
sites, the user can control where the fragment growing will
happen. The user is also encouraged to incorporate his knowl-
edge of organic synthesis by choosing the proper growing
sites.

Once the seed structure is ready, the program begins to
generate the initial population. Unlike the traditional genetic
algorithm, we have decided not to use a binary encoding but
rather carry out operations upon the chemical structures them-
selves. It is more straightforward and intuitive to handle a
molecule in this way. Each member in the initial population
is generated by adding a certain fragment to a certain grow-
ing site on the seed structure with the algorithm described in
the Building-up method section (growing, linking, and muta-
tion). Therefore, there is no combinatorial problem at this
step. The program will try all the available fragments in the
building-block library on each growing site on the seed struc-
ture and record all the resultant structures. According to our
experience, the size of the initial population is approximately
proportional to the number of growing sites on the seed struc-

ture multiplying the number of fragments in the building-
block library. Usually the program will generate several hun-
dreds of structures for the initial population.

Fitness function and selection method

The fitness value of a molecule is given by combining its
binding affinity score and bioavailability score. To avoid a
subjective selection of weight factors, we have adopted the
”tournament strategy”.[34] The first step is to rank all the
members of current population in an increasing order accord-
ing to the binding affinity score. Then the program counts
the ”wins” of each member, which usually equals to its rank
minus 1. The second step is to re-rank all the members in an
increasing order according to the bioavailability score and,
again, count the ”wins” of each member. We define that the
fitness value of a molecule is the sum of its two ”wins”. Be-
sides avoiding weight factors, another advantage of this tour-
nament strategy is that it still works well when the difference
between the best score and the worst score in the population
is too large or too small since it only cares about the relative
ranking.

We use the ”roulette-wheel” algorithm to select a certain
number of members into the mating pool. Each member in
the population will be attributed a slice on the wheel that is
proportional to its fitness value. Each time when the wheel
spins, a member will be piceked out randomly. Thus, the mem-
bers with higher fitness values are more likely to enter the
mating pool and breed offspring thereafter. The selection proc-
ess is repeated till the mating pool is full.

While selecting the parent molecules, we allow the user
to exert a forced molecular diversity by setting a maximum
similarity criterion. In our program, the 3D similarity be-
tween two molecules, e.g. A and B, is given by:

matchnumBnumAnum

matchnum
S

AB

_

−+
= (2)

Here ”num_A” refers to the number of heavy atoms in A;
”num_B” refers to the number of heavy atoms in B; while
”num_match” refers to the number of matched atom pairs.
Two atoms are considered to be matched if they are of the
same atom type (as defined in the Tripos force field) and
overlap each other (the distance between them is shorter than
0.5Å). According to the above equation, the maximum simi-
larity could be 1 while the minimum could be 0. While add-
ing a new molecule to the mating pool, the program will
calculate the similarity values between this molecule and all
the members existing in the mating pool. If any similarity
value thus obtained exceeds the user-defined criterion, the
molecule will not be allowed to enter the mating pool. By
doing so, the similarity between any two members in the
mating pool will be below that similarity criterion and there-
fore the desired diversity is achieved.

J. Mol. Model. 2000, 6 507

Generating new population

The first step to generate a new population is using the elit-
ism algorithm.[34] The user can define a certain elitism ra-
tio, for example 0.10. This means that the top 10% of the old
population will be copied directly into the new population.
Elitism ensures that the best members in the old population
will not lose unless they are replaced by better candidates.

Then the new population is filled by using the molecules
in the mating pool as seed structures. Each member in the
mating pool will be picked out in turn. The program ran-
domly selects a growing site on it and randomly selects a
fragment from the building-block library. Then the fragment
will be added onto that growing site by using the algorithm
described in the Building-up method section (growing, link-
ing, and mutation). Resultant molecules will be added to the
new population. This process is repeated till the population
is full.

Duplicate checking is performed while adding new mol-
ecules to the population. A molecule will be checked against
the existing members. If it is found to be a duplicate, it will
be discarded. Since we allow flexibility of the ligand mol-
ecules, different conformations of the same molecule are not
treated as duplicates.

Processing the final results

The GA procedure moves from generation to generation and
the average fitness of the population increases steadily. This
procedure will stop when the user-defined limit of genera-
tions is reached. Then the program will rank all the mol-
ecules in the final population in decreasing order in terms of
their fitness values. A user-defined number of molecules at
the top will be selected as the final results. Each of them will
be output in a SYBYL MOL2 file. The program will also
give a log file tabulating the file name, molecular weight,
logP value, binding affinity and bioavailability score of each
molecule.

To help the user to analyze the results, our program will
also group the resultant molecules into clusters. We have de-
signed a simple clustering algorithm to do this. First, the pro-
gram calculates the similarity value (as defined in Equation
2) between every two molecules. All the results form a simi-
larity matrix and the program will calculate the average value
of this matrix. As a starting point, the program assumes that
each molecule belongs to a different cluster. Then a multi-
step clustering process is launched, which can be briefly de-
scribed as:

(i) Find the largest element in the current matrix.

-
Asp189

S1 pocket

D pocket

P pocket

+
N

N

N
NH O

O N
H

S
O

O

H

H

H

H

O

O

Figure 8 Key interaction
sites of thrombin (PDB entry
1DWD). (a) NAPAP and the
known interaction sites. (b)
The results given by
POCKET (Hydrogen bond
donor grids in blue, hydrogen
bond acceptor grids in red,
and hydrophobic grids in
green. Thrombin is hidden for
the sake of a clear represen-
tation)

(a)

(b)

508 J. Mol. Model. 2000, 6

(ii) Find out the two molecules related to this element.
(iii) If these two molecules belong to the same cluster, go

to step (v).
(iv) If these two molecules belong to two different clus-

ters, judge whether these two clusters can be merged together
or not. If the similarity between any two molecules in these
two clusters is always larger than the average value of the
matrix, they will be merged into one cluster. If not so, they
are kept unchanged.

(v) Erase the current element and go back to step (i). This
cycle is repeated until there is no element larger than the
average value.

The above clustering algorithm is very simple and effec-
tive. Compared to other clustering algorithms,[41] the key
advantage of our algorithm is that the user does not have to
supply any parameter for this process.

NH

O

H
H

H

NH2

NH2

H
+

N

O
H

H

�

NH2

NH2
NH O

O

Figure 9 (a) The seed struc-
ture used by GROW. (b) The
seed structure used by LINK.
(Growing sites are labeled
with circles)

(b)(a)

Figure 10 (a) The most similar molecule given by GROW.
(b) Superimposed with NAPAP (this molecule in yellow while
NAPAP in blue)

Figure 11 Some interesting ligands for thrombin given by
GROW

(a)

(b)

+

NH2

NH2
NH O

O N
H

+

NH O

O

OH

OH

NH2

NH2
NH O

O

J. Mol. Model. 2000, 6 509

Validation

We have tested LigBuilder on two well-characterized en-
zymes, thrombin and dihydrofolate reductase. In the follow-
ing text, we will describe briefly the procedure of running a
LigBuilder job for a given target, from analyzing the binding
pocket to building up ligand molecules with growing strat-
egy and linking strategy. Rather than suggesting fancy ”novel”
structures, we focus on reproducing known ligand molecules.
We believe this is the right way for testing a drug design
program.

Thrombin

The final step in the process of blood clot formation is the
hydrolysis of fibrinogen to fibrin by the serine protease
thrombin. This enzyme thus constitutes a good target for the
development of antithrombotic agents and has been well stud-
ied.

The crystal structure of alpha-thrombin complex used in
our test was drawn from the Protein Data Bank (entry 1DWD).
The binding pocket of thrombin contains three principal in-
teraction sites, which, according to the literature,[42] are
denoted as S1, D, and P (see Figure 8a). The S1 site contains
an Asp residue which interacts with a positively charged coun-
ter part on the ligand molecule. The D site (denoting its distal
relation to the catalytic site) is a hydrophobic pocket which
is a favorable binding site for aromatic rings. The P site (de-
noting its proximal relation to the catalytic site) is also hy-
drophobic in nature and is important for thrombin specificity.
In this complex, the ligand molecule, NAPAP, fits these in-
teraction sites well and exhibits a high binding affinity to
thrombin (Ki=10-8M).

To design ligands for thrombin, the first step was to use
POCKET to analyze the binding pocket. The thrombin com-
plex structure was used as the input for POCKET and the
program reproduced the key interaction sites faithfully. In
Figure 8b, we can clearly see the S1 site (the blue aggrega-
tion on the left) which overlaps the amidine group of NAPAP.
We can also see the D and P site (the green aggregations in
the middle) which overlap the hydrophobic rings of NAPAP.
It is interesting to notice that POCKET has figured out some
other interaction sites which might have been neglected be-
fore.

As the next step, we ran GROW by using part of NAPAP
as the seed structure. Since NAPAP is a good inhibitor for
thrombin, we expect the program to yield some molecules
similar to NAPAP. The seed structure was extracted from the

+ N
NH2

NH2
O

N
H

O
+ N

NH2

NH2
O

O
O

+

N

N
NH2

NH2

O

O

Figure 12 (a) The most similar molecule given by LINK. (b)
Superimposed with NAPAP (this molecule in yellow while
NAPAP in blue)

(a)

(b)

Figure 13 Some interesting ligands for thrombin given by
LINK

510 J. Mol. Model. 2000, 6

central part of NAPAP and three growing sites were assigned
on it (see Figure 9a). The bioavailability rules were corre-
spondingly modified to allow structures like NAPAP to oc-
cur. GROW was submitted with a population size of 3000, a
generation limit of 10, and a maximum output of 100. Due to
the stochastic nature of genetic algorithm, we have run the
program five times to sample the solution space adequately.
Each run took about 5 hours on a SGI O2/R10000 workstation.

Among the results, we did find a molecule extremely simi-
lar to NAPAP (see Figure 10a). For the S1 site, this molecule

is exactly the same as NAPAP. For the P site, this molecule
has a more hydrophobic cyclohexane ring instead of the
piperidinium ring of NAPAP. For the D site, this molecule is
also more hydrophobic than the sulfonamide counter part of
NAPAP. As a whole, this molecule simulates NAPAP well
both in structure and conformation (see Figure 10b). The Ki
value of this molecule is predicted to be 10-9M, which is also
close to the known data of NAPAP. Besides this molecule,
there are still some other ones which are similar to NAPAP
(see Figure 11).

+

-

ARG57

+ARG52

-

O

NH

ILE94

ILE5

NH

N N

H H

H H

N

N

N

N
N

N

N

O

N
H

O

O

O

O

N

N
H

N

H

H

H

H
H H

H

H

O NH

O

O

ASP27

-

Figure 14 Key interaction
sites of DHFR. (a) MTX and
the known interaction sites.
(b) Results given by POCKET
(Hydrogen bond donor grids
in blue, hydrogen bond ac-
ceptor grids in red, and hy-
drophobic grids in green.
DHFR is hidden for the sake
of a clear representation)

(a)

(b)

N

O

N
H

H

H

OH

O

H

OOH

H

N

N

N

N

NH2

NH2

H

Figure 15 (a) The seed struc-
ture used by GROW. (b) The
seed structure used by LINK.
(Growing sites are labeled
with circles)

(a) (b)

J. Mol. Model. 2000, 6 511

NH2

N

O

N
H

O

OH

O

OH

NH2

N

O

N
H

O

NH2

O

OH

O

N

O

N
H

O

OH

O

OH

O
OH

N
H

N

O

N
H

O

OOH

OH

O

OH

N

O

N
H

O

OH

O

OH

(a)

(b)

Figure 16 (a) The most similar molecule given by GROW.
(b) Superimposed with MTX (this molecule in yellow while
MTX in blue)

Figure 17 Some interesting ligands for dihydrofolate reductase given by GROW

We also tested LINK on thrombin. In this case, the seed
structure was extracted from the ”ends” of NAPAP, which
included three separated pieces (see Figure 9b). The three
growing sites on this seed structure were assigned according
to the structure of NAPAP. The purpose of this job is to test
whether LINK can link these three pieces in a reasonable
way within the constraints of the binding pocket. LINK was
submitted with a population size of 1000 and a generation
limit of 10. This process was also repeated for five times.
Each run took about 6 hours on a SGI O2/R10000 workstation.

Among the results, we also found a molecule very similar
to NAPAP (see Figure 12a). Although the framework of this
molecule is slightly different from NAPAP, the ”style” is ba-
sically the same (see Figure 12b). LINK also suggested some
other frameworks to assemble the given seed structure, which
contain fused rings (see Figure 13). This has demonstrated
that LigBuilder can generate rings rather than simply use the
pre-made rings in the building-block library.

Dihydrofolate reductase

Dihydrofolate reductase (DHFR) is also a well-known target
for structure-based drug design. It catalyses the NADPH-de-
pendent reduction of dihydrofolate (FH2) to tetrahydrofolate
(FH4). Inhibition of DHFR interrupts the supply of FH4, caus-
ing the disruption in the synthesis of purine and pyrimidine
bases and eventually the death of the cell. The discovery of
inhibitors of DHFR has led to several useful drugs for the
treatment of cancer, bacterial infections and malaria.[43]

As a further validation, we have used the crystal structure
of DHFR complex from the Protein Data Bank (entry 4DFR).
In this complex structure, there is a ligand molecule MTX
(see Figure 14a). This ligand fits the binding pocket well and
shows a high binding affinity to DHFR (Ki=10-8M). The well-
characterized protein-ligand interactions in this case include

the hydrogen bondings between Arg 52, Arg 57 and the gluta-
mate moiety of MTX as well as the hydrogen bondings be-
tween Ile5, Asp27, Ile94 and the pteridine ring of MTX. In
addition, the central part of the binding pocket is hydropho-
bic, which matches the benzene ring in MTX.

512 J. Mol. Model. 2000, 6

there is also a remarkable cavity on the side that favors hy-
drogen donor groups. We found later that, during the ligand
construction process, some of the molecules given by the pro-
gram do fill in that cavity.

The seed structure to run GROW was extracted from the
central part of MTX (see Figure 15a) and two growing sites
were assigned on it according to the structure of MTX. By
doing so, we also expected to obtain some molecules similar
to MTX itself. GROW was submitted with a population size
of 3000, a generation limit of 10 and a maximum output of
100. The program was also repeated five times to sample the
possible solutions adequately.

Again we found a molecule extremely similar to MTX
among the results (see Figure 16a). Its conformation over-
laps the one of MTX very well (see Figure 16b). It is remark-
able because the program has precisely reproduced the flex-
ible glutamate moiety. The only major difference is that this
molecule has a substituted benzene ring instead of the origi-
nal pteridine ring. But this benzene ring is also placed and
substituted correctly to form hydrogen bondings with the
adjacent residues. Besides this molecules, GROW also sug-
gested some other structures that are also similar to MTX
(see Figure 17).

We have also run LINK for DHFR. The seed structure is
extracted from the ”ends” of MTX, which includes three sepa-
rated pieces (see Figure 15b). The growing sites on this seed
structure are also assigned according to the structure of MTX.
LINK was submitted with a population size of 1000 and a
generation limit of 10. This process was also repeated five
times.

Unlike the example of thrombin we have described above,
in this case the three pieces in the seed structure are consid-
erably apart from each other. Therefore, LINK has figured
out much more structures to assemble the given seed struc-
ture. Among them, the most similar molecule to MTX is

N

N

N

N

NH2

NH2

N
H

O

OOH

O

O

OH

(a)

(b)

Figure 18 (a) The most similar molecule given by LINK. (b)
Superimposed with MTX (this molecule in yellow while MTX
in blue)

N

N

N

N

NH2

NH2

O

O
OH

O

OH

N

N

N

N

NH2

NH2

NOH

O O

O

OH

NH

N

N

N

N

NH2

NH2

O

OH

O

O

OH O

Figure 19 Some interesting ligands for dihydrofolate reductase given by LINK

Again, POCKET reproduced the known interaction sites
correctly based on the crystal structure of DHFR. In Figure
14b, we can find all the three major interaction sites men-
tioned above. Besides these, POCKET also pointed out that

J. Mol. Model. 2000, 6 513

shown in Figure 18a. Although its structure looks similar to
MTX, its conformation is somewhat different from MTX (see
Figure 18b). This is simply because the central benzene ring
of this molecule has ”moved” one unit toward the pteridine
ring compared to MTX. But this may not a serious problem
because the hydrophobic interaction occurred there is not so
sensitive to the position of the benzene ring. Therefore, such
a change in structure does not affect the binding affinity con-
siderably. As a proof, the predicted Ki value of this molecule
is 10-8 M, which is close to the one of MTX. LINK has also
suggested many other ways to assemble the seed structure
into one integrated molecule (see Figure 19). They all have
reasonable conformations.

Discussion

LigBuilder has several remarkable features worthwhile fur-
ther discussion. These features make it a practical tool for
structure-based drug design approaches.

Fragment-based construction of molecules

As mentioned in the Introduction section, there have been a
whole bunch of programs developed for de novo ligand con-
struction. These programs try to assemble molecules by us-
ing some basic pieces, which could be either atoms or chemi-
cal fragments. Atom-based approaches include, for example,
LEGEND,[44] GenStar[45] and GROWMOL[46] while frag-
ment-based approaches include GROW [21], LUDI,[22-25]
LEAPFROG,[26] SPROUT,[27] PROLIGAND,[28-33]
NEWLEAD[47] and GROUPBUILD[48]. Clearly, using sin-
gle atoms as the building blocks will give the maximum di-
versity because in principle all organic structures can be gen-
erated by assembling atoms. However, according to our own
experience in developing atom-based program,[49] it is sim-
ply not easy to do so. Pure atom-based construction suffers
from generating unreasonable structures and it is also ineffi-
cient in handling ring systems. In addition, since it needs
more steps to build up the whole molecule atom by atom, the

combinatorial problem is severe. These probably explain why
the atom-based approaches are not so popular at present.

We have adopted the fragment-based algorithm in
LigBuilder. The basic idea embedded in our approach is that
organic compounds can be dissected into some elementary
fragments. If we focus on constructing the molecules that
might be valuable for a drug design purpose, the number of
such elementary fragments is, fortunately, rather limited.
Actually we have used a small building-block library that
only contains approximately 60 fragments. If the user has
some special requests, he is allowed to extend the building
block library by adding new fragments. This can be easily
done because that library is organized in a simple and open
form.

A special note should be addressed here on how LigBuilder
handles ring systems. The reader may have noticed that most
common rings observed in drug molecules have been already
included in the building-block library. Because mutation op-
eration is implemented in our program, each fragment in the
building-block library actually serves as a template rather
than a simple structure (see Figure 20). This method is espe-
cially useful for generating hetero-substituted rings because
with this strategy we do not have to include all the possible
hetero-substituted rings in the building-block library (which
might be as many as hundreds!). Besides using pre-defined
ring templates, LigBuilder is also capable to generate rings
efficiently with the linking operation. This is a supplemen-
tary way to add structural diversity to the resultant molecules.

Using fragmental building blocks reduces the combinato-
rial problem largely during the construction process. Another
potential advantage concerns the assessment of the synthetic
accessibility of the generated molecules. The connection of
fragments during a construction process simulates the for-
mation of bonds in a chemical reaction. We encourage the
user to incorporate his chemical knowledge by choosing the
growing sites on the building block fragments.

Growing strategy and linking strategy

Two major strategies for constructing molecules, i.e. grow-
ing strategy and linking strategy, exist for the current frag-
ment-based approaches. The first one starts from a small
chemical moiety and then adds fragments to build the mol-
ecule step by step. The alternative one places several frag-
ments independently and then searches for a suitable frame-
work that connects all fragments into one molecule.

Both strategies have advantages and disadvantages. The
advantage of growing strategy is that chemical knowledge
can be easily introduced by choosing proper sites on the seed
to add fragments. Therefore, synthetically accessible struc-
tures are more likely to be obtained with this strategy. How-
ever, growing strategy may run into difficulties if the seed is
too small compared to the binding pocket. Due to the combi-
natorial nature of the building-up process, no algorithm can
explore the solution space completely. Therefore in such a
situation, it will be very lucky if growing strategy can sug-
gest a molecule which fits to each part of the binding pocket.

N
NN

N

N

N

N

N N

N

Figure 20 Each fragment in the building block library is ac-
tually a template

514 J. Mol. Model. 2000, 6

The advantage of linking strategy is that you can maximize
the interactions between the ligand and the protein at the
very beginning by placing proper chemical fragments at the
optimal position. However, linking different fragments to-
gether is not easy since the position and the orientation of
fragments must be maintained while the linker must be chemi-
cally feasible at the same time.

However, if one realizes that drug design and discovery is
typically an iterative process rather than a single run, he will
not be confused by choosing the growing strategy or the link-
ing strategy. Actually these two strategies are suitable for
different phases during a drug design process and that is why
we have implemented both of them in our program.

The growing strategy is more suitable for lead optimiza-
tion. In this case, a known compound has exhibited promis-
ing binding affinity to the target and now the task is to im-
prove the binding affinity to the nano-mole level so that it is
worth further trials. The most common strategy for this job is
to make derivative compounds while keeping the framework
basically unchanged. By using GROW, one can take the
framework of the known lead compound as the seed struc-
ture and let the program to build derivatives. Since the frame-
work has occupied the major part of the binding pocket, the
problem of insufficient sampling will be much less severe. If
the synthetic feasibility is also properly considered, this proc-
ess can be considered as a virtual combinatorial chemistry
within the structural constraints of the biological target.

While the growing strategy is more suitable for lead opti-
mization, the linking strategy is more suitable for suggesting
ligands from scratch, i.e. lead discovery. With the help of
POCKET, the user can figure out the key interaction sites
within the binding pocket. Such information is so straight-
forward that the user can easily propose certain chemical
groups to fit those interaction sites. Then LINK will turn the
idea into real molecules. Another possible way to suggest a
lead compound is to utilize the pharmacophore model de-
rived by POCKET. Such model can be used as the structural
query to perform a 3D database searching. The lead com-
pound discovered in either way can be fed into GROW fur-
ther to be optimized. Therefore, LigBuilder is a multiple-
purposed program that can aid the whole process of struc-
ture-based drug design.

Better scoring method

An automatic drug design program like LigBuilder needs to
screen a large number of molecules to select out the success-
ful candidates. Therefore, choosing a good scoring method
is crucial for this process. Traditionally, drug design programs
”borrow” force field energies to rank the generated molecules.
However, this idea does not always work since a force field
energy could be related to enthalpy but generally it is quite
different from binding free energy. So far there is no force
field parameterized specifically to reproduce the interactions
between organic molecules with their macromolecular recep-
tors. Pioneered by the LUDI program,[22-25] empirical scor-
ing functions have provided a way to estimate binding free

energy. The average error of using such a scoring function
could be between 1~2 kcal·mol-1. Although this may not be a
very accurate estimation, it has already been a considerable
progress for drug design programs. As mentioned in the Meth-
ods section, we have developed a new empirical scoring func-
tion, SCORE, which is at least comparable to other similar
approaches. This scoring function has been applied to our
program for estimating the binding free energies of the gen-
erated molecules and, as we have demonstrated in the Vali-
dation section, it works well.

One should never forget, however, that there is still a long
road between the discovery of a tightly-bound ligand for a
target protein and the commercial availability of a drug. A
successful lead compound may be rejected later in the clini-
cal trials simply because it is too toxic, too rapidly cleared,
too quickly metabolized, or unable to reach the target en-
zyme in sufficient concentration. Therefore, if one can pre-
dict these properties as early as possible, the whole drug dis-
covery procedure could be more efficient. Unfortunately, to
predict how a new compound will affect the delicate bal-
ances of metabolic, transport, and signaling pathways in the
human body is simply impossible at this time. The state-of-
the-art approach is to use knowledge-based rules to elimi-
nate the ”obvious” outliers. As a meaningful attempt, we have
implemented such rules in LigBuilder to evaluate the
bioavailabilies of the generated molecules. Another way to
incorporate chemical knowledge into LigBuilder is using the
forbidden substructure library. The user is encouraged to add
any undesired substructure, which proves to be either toxic
or unstable, to that library. The program will take care to
reject these structures if they do occur during the ligand con-
struction process.

A practical drug design program

A program will be useless if nobody is willing to use it. There-
fore, we have paid special attention to making a user-friendly
program. In fact, LigBuilder is very easy to use. All the user
needs to do is to prepare the inputs, set a minimal number of
parameters in an index file and run the program. We have
adopted popular file formats to represent molecules, i.e. PDB
format for the protein and SYBYL MOL2 format for the lig-
ands. Therefore, the user will not have problem in preparing
the inputs or processing the outputs with his favorite molecu-
lar modeling program. We also allow much flexibility in us-
ing LigBuilder. For example, the building block library and
the forbidden substructure library are all stored in an open
manner. The user can view and edit them easily to control
the ligand construction process.

When we develop LigBuilder, another thing on the top of
our mind is the desire for a unified, extensible system for
structure-based drug design. This is reflected in many as-
pects of our program. First, we have designed LigBuilder in
a modularized manner. Each module of the program is only
responsible for a certain task of structure-based drug design
and they are highly independent to each other. Therefore, if a
module needs to be updated to keep up with the latest sci-

J. Mol. Model. 2000, 6 515

ence, we do not have to rewrite the other parts of the pro-
gram. And, if a new function is desired, we can simply insert
a new module correspondingly. For example, some users of
LigBuilder have suggested us to introduce ”similar design”
method into LigBuilder (this is about designing mimics for a
given set of compounds with known bioassay data). Within
the framework of LigBuilder, we only need to add a module,
something like POCKET, to analyze the superimposed input
molecules, find out the key features, and define the grids
outside and inside the molecular aggregation. Then, GROW
or LINK can be used to build up molecules based on such
information. Secondly, LigBuilder is written in C++ language.
By adopting the object-oriented programming techniques, it
is very natural to define and manipulate objects like atom,
bond, molecule, and force field. The source codes are highly
re-usable and extensible. This feature enables that new pro-
grams, which offer new functions, can be assembled quickly
from existing programs. For example, we developed GROW
prior to LINK. The development of LINK has been acceler-
ated considerably since approximately 80% of its source codes
was inherited from GROW.

LigBuilder has been released to the public (see the sup-
plementary material available statement). At the time of writ-
ing this paper, we have registered nearly one hundred users
all over the world. From the discussion with the users, we
have learned a lot of interesting ideas of how to make a bet-
ter drug design program. Currently we are working on the
updated version of LigBuilder.

Limitations

Here we should also remind the reader that there are two
limitations rooted in the ligand construction process imple-
mented in LigBuilder. Knowing about these limitations will
help you to use the program correctly. The first limitation is
the rigid protein approximation. Considering the flexibility
of the protein is not easy for structure-based drug design ap-
proaches. Some proteins, such as trypsin and thrombin, have
fairly rigid binding sites and do not exhibit large conforma-
tional changes upon ligand binding. While in other cases, a
part of the protein, typically a loop, moves as a consequence
of the ligand binding. However, generally this movement is
very similar for different ligands. Therefore, using the known
3D structure of a protein-ligand complex to run LigBuilder
will reduce the uncertainty to the minimum. Another limita-
tion is that our program does not minimize the molecule af-
ter each growing cycle. We believe that performing minimi-
zation for the intermediates is questionable. During the lig-
and construction, the intermediates are usually too small to
fill out the binding pocket. Therefore, full minimization of
them will probably lead to unexpect drift inside the binding
pocket, which betrays the logic of using a pre-docked seed
structure. But we do recommend the user, if necessary, mini-
mize the final output ligands within the constraints of the
binding pocket. Since almost all commercially available
molecular modeling software can do this, we do not have to
implement such a function in our program.

Conclusions

We have described a new program, LigBuilder, for structure-
based drug design. This program has implemented many state-
of-the-art techniques and could be of great interests for drug
designers. Using two well-known examples, we have dem-
onstrated that LigBuilder is able to generate chemical struc-
tures similar to the known inhibitors. Expanding LigBuilder
to a more powerful system for drug design remains as our
active research at present.

Supplementary material available statementThe
LigBuilder program is available by contacting the authors.

Acknowledgments The authors thank the Science and Tech-
nology Ministry of China and the National Natural Science
Foundation of China for their financial support.

References

1. Protein Data Bank, Brookhaven National Laboratory,
USA, http://www.pdb.bnl.gov/.

2. Montgomery, J. A.; Niwas, S.; Rose, J. D.; Secrist III, J.
A.; Babu, S.; Bugg, C. E.; Erion, M. D.; Guida, W. C.;
Ealick, S. E. J.Med.Chem. 1993, 36, 55-69.

3. Webber, S. E.; Bleckman, E. M.; Attard, J.; Deal, J. G.;
Kathardekar, V.; Welsh, K. M.; Webber, S.; Janson, C. A.;
Matthews, D. A.; Smith, W. M.; Freer, S. T.; Jordan, S.
R.; Bacquet, R. J.; Howlan, R. F.; Booth, C. L. J.; Ward,
R. W.; Hermann, S. M.; White, J.; Morse, C. A.; Hilliard,
J. A.; Bartlett, C. A. J.Med.Chem. 1993, 36, 733-746.

4. Von Itzstein, M.; Wu, W. Y., Kok, G. B.; Pegg, M. S.;
Dyason, J. C.; Jin, B.; Pham, T. V.; Symthe, M. L.; White,
H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan,
D. M.; Woods, J. M.; Bethell, R. C.; Hotham, C. J.;
Cameron, J. M.; Penn, C. R., Nature, 1993, 263, 418-
423.

5. Greer, J.; Erickson, J. W.; Baldwin, J. J.; Varney, M. D.
J.Med.Chem. 1994, 37, 1035-1054.

6. Lam, P. Y. S.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C.
N.; Ru, Y.; Bachelar, L. T.; Meek, J. L.; Otto, M. J.; Rayner,
M. M.; Wong, Y. N.; Chang, C. H.; Weber, P. C.; Jackson,
D. A.; Sharpe, T. R.; Erickson, S. E. Science 1994, 263,
380-384.

7. Hilpert, K.; Ackermann, J.; Banner, D. W.; Gast, A.;
Gubernator, K.; Hadvary, P.; Labler, L.; Muller, K.;
Schmid, G.; Tschopp, T. B.; Van de Waterbeemd, H.
J.Med.Chem. 1994, 37, 3889-3901.

8. Edwards, P. D.; Andisik, D. W.; Strimpler, A. M.; Gomes,
B.; Tuthill, P. A. J.Med.Chem. 1996, 39, 1112-1124.

9. Anonymous, Drugs, News, & Perspectives, 1995, 8, 237.
10. Martin, Y. C. J.Med.Chem. 1992, 35, 2145-2154.
11. Kuntz, I. D.; Meng, E. C.; Shoichet, B. K. Acc.Chem.Res.

1994, 27, 117-123.
12. Verlinde, C. L. M. J.; Hol, W. G. J. Structure, 1994, 2,

577-587.

516 J. Mol. Model. 2000, 6

J.Mol.Model. (electronic publication) – ISSN 0948–5023

13. Lewis, R. A.; Leach, A. R. J.Comput.-Aided Mol.Des.
1994, 8, 467-475.

14. Bohm, H. J. Curr.Opin.Biotech. 1996, 7, 433-436.
15. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J. J.Mol.Biol. 1982,

161, 269-288.
16. Meng, E. C.; Schoichet, B. K.; Kuntz, I. D. J. Comput.

Chem. 1992, 13, 505-524.
17. Schoichet, B. K.; Kuntz, I. D. Protein Eng. 1993, 6, 723-

732.
18. Meng, E. C.; Kuntz, I. D.; Abraham, D. J. J.Comput.-

Aided Mol.Des. 1994, 8, 299-306.
19. Gschwend, D. A.; Good, A. C.; Kuntz, I. D. J.Mol.Recog.

1996, 9, 175-186.
20. Goodford, P. J. J.Med.Chem. 1985, 28, 849-857.
21. Moon, J. B.; Howe, J. W. Proteins. 1991, 11, 314-328.
22. Bohm, H. J. J.Comput.-Aided. Mol.Des. 1992, 6, 61-78.
23. Bohm, H. J. J.Comput.-Aided Mol.Des. 1992, 6, 593-606.
24. Bohm, H. J. J.Comput.-Aided Mol.Des. 1994, 8, 243-256.
25. Bohm, H. J. J.Comput.-Aided Mol.Des. 1994, 8, 623-632.
26. Cramer, R. D.; DePriest, S. Implemented in the SYBYL

program, 1996, Tripos Associates, St.Louis, MO, USA.
27. Gillet, V. J.; Newell, W.; Mata, P. J.Chem.Inf.Comput.Sci.

1994, 34, 207-217.
28. Clark, D. E.; Frenkel, D.; Levy, S. A. J.Comput.-Aided

Mol.Des. 1995, 9, 13-32.
29. Waszkowycz, B.; Clark, D. E.; Frenkel, D. J.Med.Chem.

1994, 37, 3994-4002.
30. Westhead, D.R.; Clark, D.E.; Frenkel, D. J.Comput.-Aided

Mol.Des. 1995, 9, 139-148.
31. Frenkel, D.; Clark, D.E.; Li, J. J.Comput.-Aided Mol.Des.

1995, 9, 213-225.
32. Clark, D. E.; Murray, C. W. J.Chem.Inf.Comput.Sci. 1995,

35, 914-923.
33. Murray, C. W.; Clark, D. E.; Byrne, D. G. J.Comput.-

Aided Mol.Des. 1995, 9, 381-395.

34. Judson, R. Reviews in Computational Chemistry;
Lipkowitz, K. B. and Boyd, D. B. Eds. VCH Publishers:
New York, 1997, Vol.10, pp 1-73.

35. Implemented in the SYBYL program, 1996, Tripos Asso-
ciates, St.Louis, MO, USA.

36. Wang, R.; Liu, L.; Lai, L.; Tang, Y. J.Mol.Modeling. 1998,
4, 379-394.

37. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P.
J. Adv. Drug Delivery Rev. 1997, 23, 3-25.

38. Ajay; Walters, W. P.; Murcko, M. A. J.Med.Chem. 1998,
41, 3314-3324.

39. Sadowski, J.; Kubinyi, H. J.Med.Chem. 1998, 41, 3325-
3329.

40. Wang, R.; Gao, Y.; Lai, L. Perspectives in Drug Discov-
ery & Design 2000, 19, 47-66.

41. Willett, P. Concepts and Applications of Molecular Simi-
larity; Johnson, M. A., Maggiora, G. M. Eds. Wiley-
Interscience: New York, 1990, pp 43-64.

42. Banner, D. W.; Hadvary, P., J.Biol.Chem. 1991, 266,
20085-20093.

43. Kuyper, L. F. Computer-Aided Drug Design; Perun, T. J.;
Propst, C. L. Eds. Marcel Dekker: New York, 1989,
pp.327-369.

44. Nishibata, Y.; Itai, A. J.Med.Chem. 1993, 36, 2921-2928.
45. Rotstein, S. H.; Murcko, M. A. J.Comput.-Aided Mol.Des.

1993, 7, 23-43.
46. Bohacek, R. S.; McMartin, C. J.Am.Chem.Soc. 1994, 116,

5560-5571.
47. Tschinke, V.; Cohen, N. C. J.Med.Chem. 1993, 36, 3863-

3870.
48. Rotstein, S. H.; Murcko, M. A. J.Med.Chem. 1993, 36,

1700-1710.
49. Luo, Z.; Wang, R.; Lai, L. J.Chem.Inf.Comput.Sci. 1996,

36, 1187-1194.

